
Migrating your database under
the worst conditions with

Fail-back!

Art Kagel
President & Principal Consultant

ASK Database Management Corp.

1

IIUG Tech Talk

Challenge
• Migrate a large database to the cloud over

slow and unreliable WAN connections.
• Maintain fail-back strategy:
– Keep the target database in sync with the

source until turnover.
– After turnover keep the source database in

sync with the target in case of unexpected
need to revert!

2

Options
• Enterprise Replication
– Won’t work if the applications do not support

Primary Keys.

– Will not work if tables have no primary key and
cannot take the downtime to add them.

• HDR or RSS to the Cloud server?
– No good if the WAN connection is too slow.

3

Alternatives
• Any form of export/import
– Lots of lost time/updates while export files are

copied to the target and loaded.

• Direct database to database table copies

– Same problem

4

Alternatives
• Archive and restore?

– Ontape

– Onbar

– Ifxclone

All of the above alternatives are fine for the
initial copy (assuming identical versions and
platform). Still you need a way to keep the
source and target in sync until the source can
safely be taken offline after it is clear that there
will not be a need to fail back to the source
server!

5

Deliberation
As noted, any method of initially

migrating some state of the data to the
target is acceptable. But how to maintain

sync?

I fell back on a method I developed for a
client back in 2013 to migrate from v7.31

to v11.50 since ER would not work
between such an old release and v11.50!

6

Method
I had developed a set of scripts that

creates an audit table for each table in
the database and adds a set of ON EVERY

ROW triggers on the parent table – an
insert trigger, an update trigger, and a

delete trigger – each calling a generated
stored procedure that copied the

appropriate data from the transaction
into the audit table.

7

Method
 INSERT – save the entire new row
 DELETE – save the entire deleted row
 UPDATE – save both the pre-update version and

the new version of the row.
The audit tables contained all of the columns of the
parent table but also had a SERIAL type column and
an operation character (i,d,b,a) as the primary key
and a timestamp that could be used to restart a
sync operation at a given point in time. As inferred
above, an update operation wrote two rows to the
audit table.

8

Once the audit table and triggers were installed
on the source table, which only required a

brief lock on each table, data from the audit
tables, known as “deltas” could be exported
periodically, and transported to the Cloud

copy of the server.
Another set of scripts read through the deltas

and generated SQL to reapply the changes to
the target database table on the Cloud server.

9

What about failing back?

All that had to be done, was when the applications
were finally taken offline to redirect them to the
Cloud server, drop the triggers on the original
on-prem server, add them to the Cloud server,
and reverse the processing of the delta records
to maintain the on-prem server in sync until we

either had to fail back to on-prem or determined
that the original on-prem server was no longer

needed as a backup.

10

Recently had an opportunity to
use this methodology again.

A new client had a similar need, so, I dragged
out the audit scripts and began to customize

them to the specific needs of this client.

Not everything was rosey!

I had built the original scripts to read the output
from myschema to generate the DDL to create

the audit tables. The new client does not have my
utilities on their servers and time constraints did
not permit us the luxury of waiting for security

concerns to approve installing them.
Recode the scripts to use dbschema?

Problem: dbschema’s output formatting is
inconsistent. The scripts were a mess.

12

What to do?
I had a “WTF” moment when I realized that I had done it the
hard way back in 2013 in the first place! Why not just read the
%$^@# database catalog tables to generate the DDL for the

audit tables?
Although, for that 2013 client, sourced in v7.31, I probably could

have written the whole thing in AWK & ksh, today in v14.10 I
could not! There were no extended types in v7.31. However,
there are several “built-in” commonly used types in v14.10

that are actually extended types. Too complex for shell
scripting!

So, I had to write a stored procedure to generate the list of
columns with their types and feed that into the scripts that

generate the DDL for the audit tables.

13

Issues that came up
• Coping and auditing tables with encrypted data in columns
• Compare source and target tables and data
• Cleanup junk data prior to replicating
• Cleanup audit records to prevent the audit tables from

getting too large using small intervals to avoid long
transaction. That restricts how long between processing and
cleanup sessions.

• Set same serial number and timestamp on before/after pair
for update statement audit records

• Update large tables on known unique columns only (the
original processing code updated by matching all columns
from the pre-image record.

• Don’t cleanup audit table on error

14

Several issues affected processing the unloaded delta
data from the audit tables:

 Embedded delimiters in the data
 Embedded quote characters in the data
 Embedded garbage characters in the data
 Embedded web and word processing characters in the

data
The solution for this client was to process the data in

code space directly from the audit tables instead of
unloading it and processing with scripting.

15

Issues that came up

Quick Demo

Questions?

Art Kagel
ASK Database Management Corp.

www.askdbmgt.com

17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

